General Microbiology

NAME OF THE COURSE General Microbiology



Year of study


Course teacher

Assoc Prof Mirjana Skočibušić

Credits (ECTS)


Associate teachers

Type of instruction (number of hours)






Status of the course


Percentage of application of e-learning

0 %


Course objectives

This course is designed to give students understanding of basic concepts in microbiology including various microorganisms their physiology, morphology, genetics, pathogenicity, ecology, and application of microbes in biotechnology and environmental engineering.

Course enrolment requirements and entry competences required for the course

Enrolled in or passed the course Exercises in General Microbiology

Learning outcomes expected at the level of the course (4 to 10 learning outcomes)

Students completing this course should be able to:
- better understanding of the evolutionary relationships between structure, diversity and replication of different groups of microorganisms.
- learn about genetic mechanisms of adaptation of prokaryotic microorganisms in a variety of environmental conditions.
- applied methods of physiological and biochemical tests for the identification of the different groups of microorganisms.
- identify the mechanisms of pathogenicity of microorganisms that cause diseases in humans and animals as well as the mechanisms used by the hosts to defend themselves against pathogens.

Course content broken down in detail by weekly class schedule (syllabus)

1. Introduction. Historical development of microbiology. (2 hours)
2. The distribution of microorganisms and their role in biogeochemical processes in nature. (2 hours)
3. Eukaryotes, Archaea and Bacteria; structure and function. Morphology, nomenclature and classification of microorganisms. (2 hours)
4. Basic structure and function of prokaryotic and eukaryotic cells. (2 hours)
5. Microbial genetics, genome organization, mobile genetic elements. (2 hours)
6. The growth of microorganisms and the basic growth factors, nutrients, temperature, oxygen, pH and osmotic pressure. (2 hours)
7. Metabolic activity of microorganisms. Identification of microorganisms using various physiological and biochemical tests. (2 hours)
8. Microorganisms and diseases, resistance, relationship microorganisms and host immune responses to infection. (2 hours)
9. Mechanisms of antimicrobial resistance to antibiotics and other chemical substances. (2 hours)
10. Basic morphological characteristics of fungi, yeasts and molds and their pathogenicity. Diseases caused by fungi, and their toxins. (2 hours)
11. Application of microorganisms in biotechnology. (2 hours)
12. Basic morphological characteristics and development cycles of parasites.
13. The role of microorganisms in the biodegradation of heavy metals, nitrate, and chlorinated hydrocarbons. (2 hours)
14. Basic morphological characteristics of viruses, viroids and prions. Classification and nomenclature of viruses. Methods of studying properties of the viruses. (2 hours)
15. Control the growth of microorganisms by physical and chemical methods. (2 hours)

Format of instruction:

Student responsibilities

Admission to the lectures in the amount of at least 70% of the times scheduled. Completed all planned laboratory exercises and seminar essay.

Screening student work (name the proportion of ECTS credits for eachactivity so that the total number of ECTS credits is equal to the ECTS value of the course):

Class attendance




Practical training


Experimental work








Seminar essay






Oral exam




Written exam






Grading and evaluating student work in class and at the final exam

The final grade of the student is compiled from the combination of lecture, seminar, laboratory. Final course grade will be based on: Mid‐term exam 30%; End of term exam 35%; Seminar 10%; Lab course 15%. Course grade will be based upon a percentage of total points obtained using the following scale: <60% insufficient; 60-70% sufficient (2); 70-80% good (3); 80-90% very good (4); 90-100% excellent (5).

Required literature (available in the library and via other media)


Number of copies in the library

Availability via other media

S. Duraković, S.Redžepović, Uvod u opću mikrobiologiju, Kugler, Zagreb, 2002.


e-learning portal

S. Kalenić, E. Mlinarić-Missoni i sur., Medicinska bakteriologija i mikologija, Merkur A.B.D., Zagreb, 2005.


Z. Brudnjak, Medicinska virologija, Merkur A.B.D., Zagreb, 2002.


Optional literature (at the time of submission of study programme proposal)

R.A. Harvey, P.C. Champe, B.D. Fisher, Microbiology, 2th ed., Lippincott, Williams and Wilkins, Philadelphia, 2007.
R.M. Patrick, S.R. Ken, A.P. Michael, Medical Microbiology, 5th ed. Elsevier/Mosby, Philadelphia, 2005.

Quality assurance methods that ensure the acquisition of exit competences

Quality assurance will be performed at different levels: Keeping records of his attendance; Annual performance analysis examination; Student surveys in order to evaluate teachers; Self-evaluation of teachers; Feedback from students who have already graduated from the relevance of content items.

Other (as the proposer wishes to add)