Atmospheric Chemistry

NAME OF THE COURSE Atmospheric Chemistry

Code

KTI202

Year of study

2.

Course teacher

Assoc Prof Marija Bralić

Credits (ECTS)

7.5

Associate teachers

ScM Nenad Periš
Asst Prof Maša Buljac

Type of instruction (number of hours)

P S V T

45

15

15

0

Status of the course

Mandatory

Percentage of application of e-learning

0 %

COURSE DESCRIPTION

Course objectives

To provide students with basic knowledge of the atmosphere; structure, chemical cycles, and pollution, as well as the means for preventing the emission of harmful substances into the environment.

Course enrolment requirements and entry competences required for the course

 

Learning outcomes expected at the level of the course (4 to 10 learning outcomes)

After course students will be able to :
1. definition of basic concepts and history of the chemistry of the atmosphere
2. geochemical relationship of the Earth and the Sun.
3. classification of pollutants and their origin in the atmosphere
4. evaluation and screening of air quality
5. thermodynamics and kinetics of formation of oxides in the atmosphere
6. the role of various pollutants in photochemical processes in the atmosphere
7. techniques and sampling procedures of harmful substances in the atmosphere

Course content broken down in detail by weekly class schedule (syllabus)

Lecture 1: Basic characteristics of the atmosphere. The structure of the atmosphere. The composition of the atmosphere
Lecture 2: The atmosphere as the photochemical system. Incoming radiation-solar spectrum. The absorption coefficient of atmospheric gases
Seminar 1 (2 hours): Numerical methods for solving problems related to radiation and the absorption coefficient
Lecture 3: Re-emission radiation-cooling the Earth’s surface. temperature inversions
Lecture 4: Contaminants atmospheres and their origin. Expression of the content of pollutants in the atmosphere. Building an information system based on the list of pollutants, meteorological data and emission measurements
Seminar 2 (2 hours): Solving problems related to the expression of content pollution in the atmosphere
Lecture 5: Rating and projections of air quality. Emission and immission standards
Lab course 1 (3 hours): Determination of PM10 and PM2.5
Lecture 6: The kinetics of formation of carbon (II) oxide and control its emissions
Lecture 7: Thermodynamics and kinetics of formation of sulfur oxides. The basic methods of controlling sulfur oxides
Seminar 3 (2 hours): Numerical methods for solving problems related to the kinetics and thermodynamics of formation of CO2, CO and SOx
Lab course 2 (3 hours): Determination of the metal particulate matter
Lecture 8: Thermodynamics of the formation of NO and NO2 (NOx). Sources of NOx emissions
Lecture 9: The kinetics of formation of NO in the process of combustion. Methods for controlling NOx emissions from stationary sources
Lecture 10: Assessing the weight of compounds of carbon, sulfur and nitrogen in the atmosphere; emission sources, conversion, life time of each compound.
Seminar 4 (2 hours ): Numerical methods for solving problems related to NOx
Lab course 3 (3 hours): Determination of CO, CO2 and SO2
Lecture 11: Analysis of the increase in the acidity of precipitation. Creating monoatomnog oxygen and ozone
Lecture 12: Chemical reduction of the stratospheric ozone protective layer. Photochemical reactions of atmospheric pollution
Seminar 5 (2 hours): Numerical methods for solving problems related to the occurrence of acidity in the atmosphere and photochemical reactions
Lab course 4 (3 hours): Determination of NOx and NH4 +
Lecture 13: The role of various primary pollutants in photochemical processes in the atmosphere
Lecture 14: The lifetime of harmful substances in the lower atmosphere-deposition mechanisms
Seminar 6 (2 hours): Numerical methods for solving problems related to the concentration of NOx, SOx, and NH4 +
Lab course 5 (3 hours): Determination of the concentration of ozone
Lecture 15: Techniques and procedures for sampling of pollutants in the atmosphere
Seminar 7 (3 hours): Statistical analysis of data provided by the monitoring

Format of instruction:

Student responsibilities

 

Screening student work (name the proportion of ECTS credits for eachactivity so that the total number of ECTS credits is equal to the ECTS value of the course):

Class attendance

1.0

Research

0.0

Practical training

0.0

Experimental work

1.0

Report

0.0

0.5

Essay

0.0

Seminar essay

1.0

 

 

Tests

1.0

Oral exam

2.0

 

 

Written exam

1.0

Project

0.0

 

 

Grading and evaluating student work in class and at the final exam

During the semester, the two partial test to check if the knowledge of students from courses included material. During the semester students will be selected from the lecture topic to make a seminar that will affect the final grade. After completion of the semester, students take a written exam courses included material from the seminar. If the student meets at one of the partial tests during the semester, material from passing the test does not need to take the written exam. After passing the written part of the exam, the oral exam. Prior to joining the laboratory exercises, students’ knowledge of material from the respective exercise will be verified by tests. All exercises must be passed all preliminary exams and completed. The student has the right to exercise fail one exercise, but you will catch up at the end of the semester. For all aspects of teaching evaluation will be conducted according to the following criteria: <55% inadequate; 55% -65% is sufficient; 66% -75% good; 76% -85% very good;> 86% excellent. The final grade will be the arithmetic average of ratings from exercises, written assessment and oral examination.

Required literature (available in the library and via other media)

Title

Number of copies in the library

Availability via other media

Mar Viana, Urban Air Quality in Europe, Springer-Verlag Berlin Heidelberg 2013

0

U Zavodu 1 primjerak

N. P. Cheremisinoff, Handbook of air pollution prevention and control, Elsevier Science (USA), 2002.

0

U Zavodu 1 primjerak

D.J. Jacob, Introduction to Atmospheric Chemistry, Princeton University Press, New Jersey, 1999.

0

U Zavodu 1 primjerak

S.E. Manahan, Environmental Chemistry, Sixth Edition, Lewis Publishers, London, 1994.

0

U Zavodu 1 primjerak

C. Baird, Environmental Chemistry, W. H. Freeman and Company, New York, 1999.

0

U Zavodu 1 primjerak

Optional literature (at the time of submission of study programme proposal)

R.M. Harrison, Understanding Our Environment: An Introduction to Environmental Chemistry and Pollution, Second Edition, The Royal Society of Chemistry, Cambridge, 1992.
P. Brimblecombe, Air Composition and Chemistry, Cambridge University Press, Cambridge, 1986.

Quality assurance methods that ensure the acquisition of exit competences

Methods Quality assurance will be performed at three levels: (1) University; (2) Faculty Level by Quality Control Committee of teaching; (3) Level.

Other (as the proposer wishes to add)