Inorganic Chemistry

NAME OF THE COURSE Inorganic Chemistry

Code

KTJ109

Year of study

1.

Course teacher

Prof Zoran Grubač
Prof Slobodan Brinić

Credits (ECTS)

4.5

Associate teachers

Type of instruction (number of hours)

P S V T

30

15

0

0

Status of the course

Mandatory

Percentage of application of e-learning

0 %

COURSE DESCRIPTION

Course objectives

Introduce students to the chemical reactivity of elements along the periodic table, and with the properties and composition of common chemicals. To develop students ability to notice similarities and differences between inorganic compounds and inorganic substances. Understanding of the changes in the various physical and chemical conditions

Course enrolment requirements and entry competences required for the course

Enrolled in or passed the course Exercises in Inorganic Chemistry
The condition for taking the exam: Passed the course ”Exercises in Inorganic Chemistry”

Learning outcomes expected at the level of the course (4 to 10 learning outcomes)

Students upon completion of the course:
1) will know the basic characteristics and producing of chemical elements for the major groups of periodic table of elements (PTE)
3) be able to identify the type and properties of chemical compounds of main group
3) be able to identify the type and properties of transition metal compounds
4) to classified compounds on the base of their characteristics
5) to predict acidic, basic and amphoteric properties of salts
6) to know common salt crystal structure
7) to predict the possible reaction mechanisms and outcomes of chemical reactions
8) to independently and safely perform simple chemical reactions

Course content broken down in detail by weekly class schedule (syllabus)

Lectures:
1. Hydrogen position in PTE, hydrogen properties and production, positive oxidation state and hydrides
2. Noble gases, properties of group, obtaining and using of xenon compounds
3. Introduction to halogens, elements properties in order to oxidation state
4. Fluorine production and properties, differences between the fluorine and the other members of the group, fluorine compounds. Chlorine producing and properties, compounds of chlorine, bromine and Iodine
5. Introduction to chalcogen elements, elements properties in order to oxidation state
6. Oxygen properties and production, the compounds of oxygen, oxides, water
7. Sulfur properties and production, oxides and sulfur acids, other sulfur compounds, compounds of selenium and tellurium,
8. A group of nitrogen, elements properties in order to oxidation state
9. Nitrogen, properties of the production, ammonia, nitric acid and other nitrogen compounds, nitrogen fixation
10. Phosphorus, properties and production, oxides and acids of phosphorus, arsenic, antimony and bismuth
11. A group of carbon, elements properties in order to oxidation state
12. Carbon allotropes, carbon properties and production, carbon oxides, carbides, carbonates and bicarbonates.
13. The compounds of silicon, germanium, tin and lead, semiconductor properties of silicon and germanium
14. A group of boron, elements properties in order to oxidation state, boranes, boric acid. Production and properties of aluminum, aluminum compounds, gallium, indium, thallium
15. Alkali and alkaline earth metals
Seminars :
1. Balancing chemical reactions, writing and balancing redox reactions in one line
2. Common reactions of hydrogen, the reducing action of hydrogen
3. Common reactions of chlorine, the disproportionation of chlorine in alkaline solutions, the oxidation activity of the halogens compounds
4. Common reactions of chalcogen elements, reaction of oxygen and ozone, the oxidizing action of oxygen,
5. The reaction of sulfur, the reactions which translate elemental sulfur to sulfuric acid, the oxidizing action of sulfuric acid, a dehydrating effect of sulfuric acid
6. Common reactions of nitrogen, the nitrogen production reactions, the reaction of ammonia oxidation to nitric acid, the oxidizing action of nitric acid.
7. Common reactions of phosphorus, oxidation reactions of phosphorus to phosphorus and phosphoric acid
8. Common reactions of carbon, oxides of carbon production, reducing effect of CO, binding of CO2 from the air, the precipitation of carbonates, cation hydrolysis
9. Common reactions of the boron group elements, reaction of boric acid production, dissolution of borax in water, production of crystalline boron acid, base properties of aluminum hydroxide,
10. Aluminum reducing action, aluminotermic reaction, common reactions of metals and metal production,
11. Common reactions of alkali and alkaline earth metals with water and their salts
12. Common reactions of transition metals, proving of peroxide with titanyl ion, oxidation states of vanadium, oxidative properties of permanganate, equilibrium between chromate and dichromate, iron compounds
13. Noble metals, zinc, cadmium and mercury
14. Sea - a mixture of inorganic substances. The chemical composition of sea water, salinity, pH and speciation
15. Mixed problems

Format of instruction:

Student responsibilities

The 80% presence at lectures and seminars and completed all laboratory exercises.

Screening student work (name the proportion of ECTS credits for eachactivity so that the total number of ECTS credits is equal to the ECTS value of the course):

Class attendance

2.0

Research

0.0

Practical training

0.0

Experimental work

0.0

Report

0.0