Learning outcomes expected at the level of the course (4 to 10 learning outcomes) |
After passing the exam, the student is expected to be able to: - distinguish different types of polymers - explain the specific structure of the polymer - argue correlation of structure and properties of polymers - describe the basic properties of polymers (mechanical, thermal, optical, electrical) - carry out tests of thermal, mechanical and structural properties of polymers - describe the mechanisms of polymer degradation - dse the acquired knowledge in engineering practice |
Course content broken down in detail by weekly class schedule (syllabus) |
1st week: Introduction. Basic concepts and terminology. Types of polymers: thermoplastics, thermosets, elastomers, thermoplastic elastomers. 2nd week: The structure of polymers: the size of macromolecules, molecular weight, homopolymers, copolymers, the configuration of macromolecules. 3rd week: The conformation of macromolecules. Morphology of macromeolecular systems. 4th week: Phase states and physical states of polymers. Thermomechanical curve. Polymer liquid crystals. 5th week: Differential scanning calorimetry. Transition temperatures: the glass transition temperature, the melting temperature, the crystallization temperature. 6th week: Thermal degradation of polymers. Thermogravimetric analysis. 7th week: UV/VIS spectroscopy. Oxidative degradation. Ozonation. 8th week: Photochemical and photooxidative degradation. Ionizing degradation. 9th week: Chemical and mechanical degradation. Aging. Biodegradation. 10th week: The thermal stability and combustibility of polymers. 11th week: The permeability of polymers. Thermal properties of polymers. 12th week: The mechanical properties of polymers. 13th week: The optical properties of polymers. The solubility of polymers. 14th week: Electrical properties of polymers. Conductive polymers. 15th week: Infrared Spectroscopy. Exercises: Identification of polymers by primary tests, Viscometric determination of molecular weight of polymers, Identification of polymers and additives by infrared spectroscopy, Determination of glass transition temperature by thermomechanical method, Determination of the glass transition and the melting temperature by differential scanning calorimetry, Analysis of structure of degraded poly(vinyl chloride) by UV/VIS spectroscopy, Thermogravimetric analysis of polymers, Determination of hardness - Shore hardness. |