Biotechnological Processes

NAME OF THE COURSE Biotechnological Processes

Code

KTD102

Year of study

0.

Course teacher

Prof Branka Andričić

Credits (ECTS)

5.5

Associate teachers

Matko Maleš

Type of instruction (number of hours)

P S V T

30

15

30

0

Status of the course

Mandatory

Percentage of application of e-learning

0 %

COURSE DESCRIPTION

Course objectives

Gaining of basic theoretical knowledge in biotechnology as well as the role and application of microorganisms and enzymes in industrial processes and environment protection.

Course enrolment requirements and entry competences required for the course

 

Learning outcomes expected at the level of the course (4 to 10 learning outcomes)

- definition of term biotechnology
- differentiate the primary and secondary cell metabolism and its application in biotechnology
- explain of microbe cell growth diagram
- explain the advantages of isolated enzymes in biotechnology
- describe of basic bioreactor design
- describe the basic methods of intracellular products isolation
- outline some examples of biotechnological processes

Course content broken down in detail by weekly class schedule (syllabus)

1st week: Description and overview of the course. Definitions of biotechnology, interdisciplinary of the field, history development, application areas.
2nd week: Perception of biotechnology in society. Metabolism and control of metabolic processes; primary and secondary metabolism, substrates.
3rd week: Anaerobic and aerobic metabolism. Microorganisms in biotechnology (bacterial, fungi (yeasts and moulds). Microbial growth kinetics. Determination of specific growth rate and Monod constant.
4th week: Enzyme technology (enzyme characteristics as the biocatalysts, advantages and disadvantages compared to whole cells). Enzyme kinetics.
5th week: Enzyme sources. Selection, production and immobilization of enzymes.
6th week: Biocatalysts in non-conventional processes. Bioreactors, photo-bioreactors, design.
7th week: Oxygen transfer and oxygen concentration determination. Heat transfer in bioreactor. An overview of the previous lecture for the test.
First test.
8th week: Extracellular, periplasmic and extracellular products of metabolism. Down-stream processing: separation solid-liquid, isolation of intracellular products.
9th week: Concentration and purification of products from bioreactor. Purification process control.
10th week: Process economy: cost estimation and an example of process design. An overview of biotechnological processes – basic scheme of biotechnological process.
11th week: Alcohol fermentation and its application in industry.
12th week: Lactic acid fermentation and its application in industry. Anaerobic biomass fermentation.
13th week: Biotechnology in pharmacy. Bacterial polymers.
14th week: Biotechnology in environmental protection and waste water treatment. Biosensors.
15th week: An overview of the previous lectures. Second test.

Format of instruction:

Student responsibilities

Attendance on lectures at least 80 % and 100 % completed la exercises.

Screening student work (name the proportion of ECTS credits for eachactivity so that the total number of ECTS credits is equal to the ECTS value of the course):

Class attendance

1.0

Research

0.0

Practical training

0.2

Experimental work

1.0

Report

0.0

Tests before experimental work

0.2

Essay

0.0

Seminar essay

0.5

 

 

Tests

0.8

Oral exam

0.8

 

 

Written exam

1.0

Project

0.0

 

 

Grading and evaluating student work in class and at the final exam

Attendance on lectures gains max 2 points, the exercises 10 and the seminar presentation 3 points. In the final grade that makes 30%. The complete exam can be passed through two tests during semester. The passing score is 60 % and the fraction of each test is 35%. In the exam period the student has to attend to written and oral exam (passing score is 60%). Written exam is 35% and oral exam is 35%.
Grades: successful (60% – 70%), good (71% – 80%), very good (81% – 90%), excellent (91% – 100%).

Required literature (available in the library and via other media)

Title

Number of copies in the library

Availability via other media

C. Ratlege, B. Kristiansen, Eds. Basic Biotechnology, Cambridge University Press, Cambridge, 2006.

1

kod predmetnog nastavnika

A. Scragg, ed. Biotechnology for Engineers-Biological Systems in Technological Processes, Ellis Horwood LTD, Chichester, 1988.

1

Optional literature (at the time of submission of study programme proposal)

J.E. Smith, Biotechnology, Cambridge University Press, Cambridge, 2000.

Quality assurance methods that ensure the acquisition of exit competences

Quality assurance will be performed at three levels:
(1) University Level;
(2) Faculty Level by Quality Control Committee;
(3) Lecturer’s Level.

Other (as the proposer wishes to add)